时间:2022年03月18日 分类:科学技术论文 次数:
摘要拉曼光谱技术具有快速、原位、无损伤检测等优点。近年来,该技术在肉类工业中的应用受到越来越多的关注。该文总结了拉曼光谱在肉品研究中常用的拉曼位移、信号来源及其与肉品品质、安全的关系;总结分析了拉曼光谱在研究肉的pH值、嫩度、颜色、保水性、营养成分、货架期与致病菌、掺假判断等食品品质和食品安全指标的应用,以及拉曼光谱数据的处理与分析方法,以期为促进拉曼光谱技术在肉的品质和安全控制中的应用提供研究思路和理论指导。
关键词拉曼光谱;肉;品质预测;货架期预测;掺假判定
肉的食用品质通常包括嫩度、风味、多汁性、肉色和保水性等,安全性包括微生物、兽药残留控制等[1]。随着消费者对食品品质和安全性要求的提高,食品品质和安全检测变的日益重要[2]。传统的肉品食用品质分析多采用感官分析和仪器分析,微生物检测多采用平板菌落计数[1]。
上述传统分析方法通常费时、费力,因此开发快速的品质、安全检测方法至关重要。拉曼散射效应是印度物理学家C.V.Raman于1928年首次发现的。在克服了散射信号弱、荧光干扰强、检测效率低、数据处理慢等问题后[2],拉曼光谱(Ramanspectroscopy)技术由于具有快速、原位、无损伤检测等特点,在食品领域的应用研究受到广泛关注。
在肉的品质和安全分析中,色散型拉曼光谱[3,4](dispersiveRaman,DISRaman)和傅立叶变换拉曼光谱[5,6](fouriertransformRaman,FTRaman)技术均有应用;为了提高在食品致病菌、兽药残留等分析中的检测效率,还有研究使用了表面增强拉曼光谱[7,8](surfaceenhancedRamanspectroscopy,SERS)、空间偏移拉曼光谱[9](spatiallyoffsetRamanspectroscopy,SORS)等技术。拉曼光谱技术的应用研究日新月异,及时总结、分析最新研究成果,对拉曼光谱技术的发展及其在我国肉类产业中的应用具有重要意义。
因此,本文总结了拉曼光谱在肉与肉制品研究中常用的拉曼位移、信号来源及其与肉品品质、安全的关系,并从拉曼光谱技术预测、分析肉的食用品质、营养成分、食品安全控制和肉的掺假等方面详细论述了拉曼光谱在肉的品质、安全控制中的应用,以及拉曼光谱在肉品研究中常用的光谱处理和数据分析方法,同时分析了影响拉曼光谱预测准确性的因素和解决措施,以期为拉曼光谱在肉的品质控制中的研究提供新思路,并推进拉曼光谱技术在肉类产业中的应用。
1拉曼光谱的技术原理及其在肉品研究中应用的理论基础
处于基态的样品分子受到外来光子的激发后,其能量状态变成不稳定的中间状态,样品分子在离开中间能量状态时随机辐射光子。激发光的光子与物质分子相碰撞,可产生弹性碰撞和非弹性碰撞。在弹性碰撞过程中,二者没有发生能量交换,光子频率保持恒定,这种散射现象称为瑞利散射(Rayleighscattering)[10]。
在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使其频率改变,由于不同的化学键或基团有不同的能量改变,并产生相应的光子频率变化,因此根据光子频率变化就可以判断出分子中所含有的化学键或基团。这种分子对光子的非弹性散射效应即是拉曼光谱技术的原理[11]。
散射光频率与入射光频率差值称为拉曼位移。肉与肉制品的物质组成、含量及其在加工过程中蛋白质二级结构的变化能通过拉曼位移反映出来,这成为拉曼光谱在肉与肉制品加工和品质、安全控制中应用的基础。其中的酰胺带(1645~1685cm)、酰胺III带(1200~1235cm)与肉的品质相关性最大。酰胺带主要包括α螺旋(1650~1658cm),β折叠(1665~1680cm–)、β转角(1680cm)和无规则卷曲(1660~1665cm)结构[12]。
肉品研究中常用的拉曼位移主要处于500~1800cm之间,涉及到的信号来源有色氨酸等多种氨基酸;CN等基团的拉伸、弯曲、剪振以及α螺旋、β折叠β转角等,主要用于肉的品质(嫩度、pH值、保水性、肉色)预测、异质肉(SE(Pale,Soft,Exudative)肉、FD(Dark,Firm,Dry)肉)判定、货架期预测和掺假肉的鉴别。
2拉曼光谱技术在肉与肉制品品质控制中的应用
2.1拉曼光谱在肉制品品质预测与分析中的应用
2.1.1值pH值是肉的关键品质指标,pH值过高或过低的肉,品质较差,均为异质肉[1]。肉的极限pH值大于.1时,为FD肉,该类肉表面干燥、货架期短且有轻微的肥皂味;极限pH值低于.4时,为SE肉,该类肉汁液渗出严重、货架期短[1]。因此,实现pH值的快速预测和异质肉的快速判定,对于保证肉品质的一致性有重要意义。
拉曼光谱能够快速预测宰后初期猪肉、羊肉的值。Scheier等较早得将拉曼光谱应用于宰后早期预测猪肉品质,研究发现磷酸基团(80cm和080cm)拉曼信号可以用于预测宰后早期的pH值(0.71)[38],后续的研究发现宰后初期磷酸化代谢物质与无机磷酸拉曼信号的变化与pH值的降低有关;可以利用磷酸肌酸、三磷酸腺苷(AdenosineTriphosphate,ATP)、二磷酸腺苷(AdenosineDiphosphate,ADP)和α螺旋区分正常和异质肉[18]。之后该研究小组首次将便携式拉曼光谱应用于生猪屠宰线,实现利用糖原、乳酸、肌酸、磷酸肌酸、TP、DP的拉曼信号快速预测宰后5min和4h肉的pH值[25,35]。
但是相比实验室条件下的预测准确性,在生产条件下pH值预测模型的值仅为.58,预测能力显著下降。随后Nache等人[36,37]利用偏最小二乘回归等多种数据处理方法进一步提高了猪肉pH值在线预测的准确性。Fowler等人[19]将拉曼光谱应用于完整的半膜肌pH值的在线预测,结果发现预测模型的为.35,这一数值与猪肉pH值的预测准确性相比略低。其原因可能与羊肉中含有较少的IB型肌纤维有关,也可能与其未合理处理拉曼光谱数据有关。
2.1.2嫩度
嫩度是肉的重要食用品质指标,分析肉的嫩度通常采用感官评定或测定剪切力的方法[1],但测定肉的剪切力费时、费力。因此,开发快速无损预测肉嫩度的方法对于控制肉的品质具有重要意义。从表可以看出,在使用拉曼光谱预测牛米龙[14]、牛背最长肌、半腱肌、臀中肌[39]、羊背最长肌[40]的剪切力时具有较高的准确性,且可以实现对肉感官品质的预测[14,41]。
然而,在Fower的研究中,预测羊半膜肌[27]、羊背最长肌[40]、牛背最长肌[42]剪切力时的准确性较差,且在预测模型中增加肌原纤维断裂、粒子直径、肌节长度和pH值均不能提高预测准确性[27,40]。经分析发现,Fowler倾向于不处理或少处理光谱数据,这可能是其预测准确性低的原因,也突出了数据分析方法在拉曼光谱技术中的重要性。
此外,不同物种、不同部位间肌肉的类型不同,以及肌肉内糖原含量、线宽度等不同,会导致拉曼光谱的预测准确性不同[19]。颜色较深的肉会增加光吸收导致拉曼信号降低[19],而较韧的肉拉曼信号强于嫩的肉,其原因可能是韧度高的肉蛋白质密度高,增加了散射分子并最终增强了拉曼信号[17]。因此,肌肉僵直期间拉曼光谱信号强,而肌肉成熟后肌纤维结构的降解则降低了拉曼信号[27],导致牛肉宰后天拉曼光谱的预测准确性高于其宰后天拉曼光谱的预测准确性[40]。拉曼光谱还可用于分析肉嫩度差异的原因。
Fowler等[23]研究发现嫩度高和嫩度低的牛肉之间α螺旋(930cm)和酪氨酸双带(826cm和53cm)的拉曼光谱显著不同。在嫩度差的肉中,α螺旋的量降低,β折叠或无规则卷曲含量高[27],而嫩度高的肉酪氨酸双带强,嫩度差的肉酪氨酸双带弱[27,28]。酪氨酸存在于多种蛋白质中,酪氨酸的拉曼位移强度直接反映了肉在成熟过程中蛋白质水解产生的自由酪氨酸的量[44]。拉曼位移830cm信号强度的降低代表酪氨酸酚羟基与氧结合,降低了肌原纤维的降解能力,使肉的嫩度变差[44]。
2.1.3肉色和保水能力
拉曼光谱可以通过1296、1356、1358、1370、1377等与肌红蛋白相关的拉曼位移,以及1367、1600~1700等与保水性相关的拉曼位移预测肉的颜色和保水性。拉曼光谱可以用于预测肉的颜色、汁液损失和烹制损失。肉色是肉的重要商品属性,肉色影响消费者的购买意愿[1],Scheier等[35]发现拉曼光谱与猪肉的L*和b*值具有较高的相关性,而Folower等[19]发现拉曼光谱与羊肉的L*值相关性较差。由于利用色差计能够实现对肉色的快速测量,拉曼光谱用于预测肉色的实用性较小,因此拉曼光谱在肉色判定领域的研究相对较少。
肉的保水性与产品出品率相关,且肉的保水性测定较为费时,因此研究利用拉曼光谱快速预测肉的保水性具有重要意义。已有的研究发现拉曼光谱能够较好的实现鸡肉、猪肉和牛肉的保水性的快速预测,拉曼光谱与保水性的拟合效果较好。但是在鸡肉和牛肉的模型中,仍存在样本量较少的问题,因此增加样本量进一步提高拟合效果,是拉曼光谱用于实际生产中进行保水性预测的关键。
2.2拉曼光谱在肉制品营养品质分析中的应用
拉曼光谱技术在分析肉中水分含量、蛋白质含量、脂肪含量以及脂肪酸组成上得到应用并取得较好的结果,较早期的研究首先将拉曼光谱应用于脂肪组织[1341,42]中碘值和脂肪酸含量的测定,且均得到较理想的拟合效果。近年来,学者们进一步将拉曼光谱应用于肌肉组织中肌内脂肪含量和脂肪酸含量的测定,发现拉曼光谱对多不饱和脂肪酸的预测效果较好,达.93[18],但是对于肌内脂肪含量的预测效果,不同的研究团队所得的研究结果有所差异。
Olsen等[41]在不同时间、使用不同设备检测拉曼光谱技术预测脂肪含量的有效性和准确性证明了拉曼光谱建立的模型在经过多元散射校正后具有良好的预测能力。脂肪含量和脂肪酸组成是影响肉质量的重要因素[1],建立快速检测原料肉和肉制品中脂肪含量、脂肪酸谱的方法不但对产品质量控制具有重要意义,还能为产品的快速分级奠定基础。但是,目前利用拉曼光谱对脂肪含量和脂肪酸含量进行预测的研究较少,尤其是对肌肉中脂肪酸组成的预测更是少之又少。
2.3拉曼光谱在肉制品安全控制中的应用
微生物腐败和致病菌污染是影响食品安全的重要因素。由于传统的微生物分析方法费时费力,肉类工业亟需能够快速、无损的肉品腐败和致病菌检测技术。拉曼光谱可以实现对生鲜肉和肉糜货架期的预测,并实现一些重要食源性致病菌的快速检测。使用拉曼光谱可以准确预测不同包装下肉的细菌总数、乳酸菌、肠杆科菌、假单胞菌、热杀索丝菌及酵母菌和霉菌[3,47],且其预测准确度较高,或者对不同腐败状态的肉进行分类判断[15,48],可以实现肉品货架期的预测或快速判定。
在致病菌方面,研究发现拉曼光谱可以对单增李斯特菌、沙门氏菌、金黄色葡萄球菌和小肠结肠炎耶尔森氏茵在属、种和株三个层次上进行鉴定,样品处理加拉曼光谱分析总时间少于,属于快速分析方法[49]。此外,研究发现拉曼光谱中拉曼位移1520、1330、1030和875cm仅存在于生物膜中,可以作为沙门氏菌生物膜的特征光谱[50]。
兽药残留也是消费者关注的重要食品安全问题。翟晨等[7]和班晶晶等[8]使用表面增强拉曼光谱分析了肉中的兽药残留,结果表明拉曼光谱在兽药残留分析中具有较高的准确性。由此可见拉曼光谱不但可以对不同微生物进行快速、准确的判定,还能分析微生物的成膜特性进而为开发合理的抑菌杀菌措施奠定基础。需要注意的是,兽药的残留量数量级较小,因此通常采用表面增强拉曼光谱技术进行分析。
2.4拉曼光谱在肉与肉制品掺假分析中的应用
掺假肉的快速、准确鉴别和食品原料的来源分析是商品打假的技术基础。如表所示,Zając等[5]使用傅立叶变换拉曼光谱分析牛肉中掺入马肉,结果表明其预测准确性较高(R=0.94),而色散型拉曼光谱也可以结合主成分分析准确判定掺入马肉的牛肉[21,51];拉曼光谱不但能确定牛、绵羊、猪、鱼、禽、山羊和水牛肉鲜肉的物种来源,还能准确区分上述不同来物种的肉加工的色拉米[51]。
拉曼光谱技术为肉的掺假判断提供了新的技术支持,但是该技术在肉掺假领域中的研究还比较有限。拉曼光谱技术在肉品中的应用涵盖了pH值、嫩度、颜色、保水性、营养成分、货架期与致病菌、掺假判断等多个研究领域。除了上述应用外,拉曼光谱技术在肉品中还有抗氧化效果鉴定[53]、反复冻融牛肉鉴定[20,34,54,55]、判断不同分割部位[9]等方面的研究。
3总结与展望
拉曼光谱是一种基于拉曼散射效应的光谱分析技术。该技术具有快速、原位、无损检测、无需样品处理等特点,可以在分子水平上提供材料组成和结构变化的信息。目前,拉曼光谱广泛应用于鲜肉和肉制品的研究。研究对象涵盖了猪牛羊禽鱼等多个物种的分割肉或肉制品,研究内容则涵盖测定或预测肉的pH、嫩度、颜色、保水性等食用品质,以及肉的营养成分、货架期、微生物及兽药残留等,且大部分研究得到较准确的分析、预测结果。
研究结果明确了拉曼位移与肉品质的关系,确立了某些肉的品质的特征拉曼光谱,这些拉曼位移可以作为一种肉质性状的标记,也可以解释肉质性状发展的内在机制。在本文综述的研究中,应用的激发波长有种,应用最多的激发波长是671nm和785nm。光谱的预处理应用最多的是基线校正、平滑、均值中心化和标准化。在数据处理上,主成分分析、偏最小二乘回归、偏最小二乘判别分析和留一法交叉验证应用较多,且得到良好的分类和预测结果。
拉曼光谱在预测肉类pH值、嫩度、颜色、保水性等食用品质时具有较高的预测准确度。但拉曼光谱预测肉类嫩度时,不同的研究之间存在很大的差异。该技术还可以预测肉的营养价值,如肌内脂肪含量、碘值、饱和不饱和脂肪酸,但仍需要更多的研究来对预测模型进行改进和优化。
此外,拉曼光谱在肉类安全领域有着广泛的应用,如预测肉和肉制品的货架期,或通过拉曼光谱检测肉类中的沙门氏菌属。最后,拉曼光谱还可检测肉类掺假,区分肉类来源的种类。总而言之,拉曼光谱是预测肉类品质性状、营养、肉类腐败和病原体污染以及鉴别掺假的有力工具。
本文总结了大量研究的样品数量、激发波长、光谱及数据处理方法及结果准确性等,为拉曼光谱技术在肉类研究中的应用提供了技术参数指导和研究思路,并为研究肉制品品质形成的机理提供了拉曼光谱这一新方法。然而拉曼光谱在肉品中的应用还存在以下问题:
第一,每个物种的分割肉块或产品具有独特的拉曼光谱,还需要大量扫描光谱数据并建立其与各品质、安全指标间的关系以待应用。第二,目前拉曼光谱在肉品中的应用研究还处于少量样品的科研阶段,如何保证拉曼光谱在原料和环境复杂多变的生产中保持预测准确性,还需要科研人员努力解决。第三,不同研究在预测生鲜肉嫩度时准确性的差别较大,尚需要大量研究并结合日益发展的数理统计方法以提高拉曼光谱预测生鲜肉嫩度的准确性。虽然拉曼光谱在肉与肉制品中的应用还存在诸多问题,但是拉曼光谱快速、无损的检测能力为工业化在线应用提供了可能,必将成为一个具有广大应用前景的朝阳技术。
参考文献
[1]HOPKINSDL.Chapter12TheEatingQualityofMeat:II—Tenderness[M]//TOLDRA´F.Lawrie´sMeatScience.WoodheadPublishing.2017:357381.
[2]QINJ,CHAOK,KIMMS.IntroductiontoRamanChemicalImagingTechnology[M]//ComputerVisionTechnologyforFoodQualityEvaluation.ElsevierInc.,2016.
[3]YANGH,HOPKINSD,ZHANGY,etal.PreliminaryinvestigationoftheuseofRamanspectroscopytopredictbeefspoilageindifferenttypesofpackaging[J].MeatScience,2020,165:108136.
[4]FOWLERSM,SCHMIDTH,VANDEVENR,etal.PreliminaryinvestigationoftheuseofRamanspectroscopytopredictmeatandeatingqualitytraitsofbeefloins[J].MeatScience,2018,138:5358.
[5]ZAJĄCA,HANUZAJ,DYMIŃSKAL.Ramanspectroscopyindeterminationofhorsemeatcontentinthemixturewithothermeats[J].FoodChemistry,2014,156(3):333338.
[6]HERREROAM,CAMBEROM,ORDóñEZJ,etal.Plasmapowderascoldsetbindingagentformeatsystem:RheologicalandRamanspectroscopystudy[J].FoodChemistry,2009,113(2):493499.
[7]翟晨,李永玉,彭彦昆,等.表面增强拉曼光谱快速检测生鲜肉中的瘦肉精[J].农业工程学报,2017,33():7528.ZHAICHEN,LIYONGYU,PENGYANKUN,etal.RapiddetectionofsalbutamolinfreshmuscletissuesbasedonsurfaceenhancedRamanspectroscopy[J].TransactionsoftheChineseSocietyofAgriculturalEngineering(TransactionsoftheCSAE),2017,33(7):275280.
[8]班晶晶,刘贵珊,何建国,etal.基于表面增强拉曼光谱与二维相关光谱法检测鸡肉中恩诺沙星残留[J].食品与机械,2020,36():5558.
作者:王新怡,董鹏程,罗欣,毛衍伟,张一敏