学术咨询

让论文发表更省时、省事、省心

水果及其加工产品中糖苷键合态香气物质的研究进展

时间:2021年07月14日 分类:农业论文 次数:

摘要香气作为消费者衡量水果及其加工产品品质的关键指标,其优劣可以显著影响消费者对水果及其加工产品的接受程度。香气主要以游离态和键合态两种形式存在于果实中,其中糖苷键合态香气物质因其以糖苷形式存在而不易被人直接感知,糖苷键合态香气物质的研究

  摘要香气作为消费者衡量水果及其加工产品品质的关键指标,其优劣可以显著影响消费者对水果及其加工产品的接受程度。香气主要以游离态和键合态两种形式存在于果实中,其中糖苷键合态香气物质因其以糖苷形式存在而不易被人直接感知,糖苷键合态香气物质的研究对于提升、平衡、恢复水果及其加工产品的风味至关重要。该文综述了水果及其加工产品中糖苷键合态香气物质的结构、提取和分析方法、香气释放方式及一些常见香气化合物的保留指数与气味,以期为今后水果增香产业化应用提供理论参考。

  关键词水果及其加工产品;键合态香气物质;释放方式;增香;

水果加工

  香气不但可以间接的反映出水果及其加工产品的口感及风味,而且其在提升消费者口碑及市场竞争力方面也起了关键性的作用。水果中的香气物质包括游离态、键合态香气物质,且呈香的是游离态香气物质。键合态香气物质一般以糖苷键合态的形式与水果中的糖类物质相结合,其在酸、酶或者超声作用下会释放出游离态芳香物质进而被人感知达到增香的目的[1]。

  糖苷键合态香气物质的研究起源于Francis和Allcock在1969年对玫瑰花瓣中以糖苷形式存在的单萜醇进行的研究[2],到了1974年Cordonnier等证实了水果中糖苷键合态香气物质的存在[3],此后水果中糖苷键合态香气物质的研究逐渐增多,包括葡萄、柑橘、苹果、猕猴桃、樱桃等方面,其中以葡萄、柑橘、苹果中糖苷键合态香气物质的研究较为系统。

  20世纪80年代糖苷键合态香气物质于葡萄中的首次发现[4]激发了人们对于葡萄和葡萄酒中香气前体物质的研究兴趣,研究发现葡萄中糖苷键合态香气物质含量较游离态高,其中单萜类物质是麝香型葡萄品种中最为常见的糖苷配基,且阈值较低,一般作为麝香型葡萄酒的特征香气物质[5-7]。同样,柑橘汁作为销量最多且最受青睐的果汁,人们对其糖苷键合态香气物质的研究也较早,早在1991年宛晓春等即发现萜醇在柠檬中有很大一部分以糖苷键合态形式存在[8]。此后,范刚[9]、Ren[10]等相继较为全面的测定了不同柑橘汁中糖苷键合态香气物质。范刚[9]研究得出不同橙汁水解得到的键合态香气物质含量从高到低依次为酸橙、脐血橙、哈姆林甜橙、锦橙。

  Ren等[10]分别在Hamlin、GrapefruitWhite、GrapefruitRed、Guoqing、MiyagawaWase、Owarisatsuma中检测到5、6、3、12、10、5种键合态挥发性化合物,其中对乙烯基愈创木酚在六种柑橘汁中均能被检测到,芳樟醇氧化物同时以游离态、键合态形式存在于两类柚子中,且在GrapefruitRed中以键合态形式存在的芳樟醇氧化物含量约为游离态含量的两倍以上,故该化合物的释放可能是GrapefruitRed花香气味的一大贡献者。此外,苹果作为最重要的鲜果之一,人们对苹果中键合态香气物质的研究由早期的单一苹果品种Braziliancashew到逐渐的品种多元化,研究发现Braziliancashew苹果中主要配基为烷基醇、芳香醇、芳香酸等[11],而在CrimsonCrisp,GoldenDelicious,Fuji,GalaRoyalandPinkLady苹果中则以脂肪醇为主要配基,其次为芳香醇、羧酸、苯丙醇、酯类[12]。

  本文从如何提升水果及其加工产品的香气质量出发,综述了水果及其加工产品中糖苷键合态香气物质的结构、提取和分析方法、香气释放方式及一些常见香气化合物的保留指数与气味的研究进展,以期更好地满足消费者对水果及其加工产品品质的要求。

  1糖苷键合态香气物质的化学结构

  1.1配基部分(Aglycone)

  配基为糖苷中与活性糖供体相结合的挥发性化合物,此类挥发性化合物中-OH、-NH2、-COOH、-SH、C-C等受体基团可在糖基转移酶的催化作用下将其与活性糖供体相结合形成糖苷键合态香气物质。糖苷键合态香气物质的配基主要包括萜烯类物质、降异戊二烯类物质、酚类化合物及一些苯基衍生物等。其中,萜烯类化合物作为最重要的一类键合态香气物质,其具有5的倍数个碳原子,以异戊二烯为基本结构单位,主要包括半萜、单萜、倍半萜等,且已在植物、动物、微生物中发现了不同结构的萜烯类分子超过2万种[13]。

  目前,研究人员对水果及其加工产品中萜烯类化合物已经有了较为广泛的研究,主要包括葡萄、柑橘、芒果、樱桃等。萜烯类化合物不仅作为柑橘果实中含量最多的挥发性化合物,而且不同的萜烯类物质也代表了不同品种柑橘汁中特有的香气信息[14]。

  同样,“lexandria”玫瑰香葡萄及葡萄酒中单萜烯类香气糖苷作为其最重要的潜在香气源[15],且不同葡萄品种单萜含量的变化与某些VviTPS和VviGT基因的转录水平有关,如雷司令(Riesling)中,VviGT14和VviUGT88AL1转录水平与香叶醇积累有关,在汉堡麝香(uscatHamburg)中,VviPNLGl2和VviPNLGl4转录水平与芳樟醇积累有关[16]。此外,樱桃、芒果中亦是如此,萜烯类物质赋予二者主要的特征香气成分,并且构成了二者所具有的独特香气框架[17-18]。所谓构成水果中独特香气框架的香气成分并不是指可以被人简单感知到的挥发性化合物,而是基本可以决定水果本身特有香气的挥发性化合物。

  其中,这些化合物大多数是由香气活性值(OdorActivityValue,OAV)值一般大于1的香气活性物质所组成,但因OAV值仅仅是基于水果体系中各香气化合物不存在相互作用的理想条件下来评估它们在总香气体系中所发挥的作用,故OAV值小于1的化合物也有可能与其他香气物质相互作用后成为香气框架的主要构成部分[19-20]。由此可见,由萜烯类化合物为配基的糖苷键合态香气物质所释放的香气化合物不论是OAV值大于或小于1的香气化合物均可能是构成水果及其加工产品中特有风味的挥发性化合物,这将使得水果及其加工产品中风味物质的香气强度基于原有基础上进一步得到提升。因此,水解以萜烯类化合物为配基的糖苷键合态香气物质对于改善水果及其加工产品的香气质量至关重要。

  1.2糖基部分(Gglycone)糖苷键合态香气物质的糖基部分通常以双糖苷及单糖苷为主,三糖苷罕见[21],它们对于果汁整体风味的增香而言发挥了不容忽视的作用。其中以柑橘类产品为例,柑橘果实随着贮藏时间的延长或者加工温度的过高均会出现“后苦”现象,这将掩盖果实及其加工产品的香味,影响产品的销量。而若对柑橘类产品中糖苷键合态香气物质进行水解,则柑橘类产品的甜度将会伴随着糖苷键合态香气物质中糖基的释放而得到提升进而达到降低苦味的目的。就糖苷而言,β-D-葡萄糖苷会与配基直接相连,而额外的糖单元可以选择性的添加到β-D-葡萄糖基团部分,从而实现糖基结构的多样性。

  近年来,已有相关研究人员对键合态香气物质的糖基部分进行了研究,并且相继研究发现柠檬汁中糖基可能是葡萄糖和鼠李糖[8]、树莓汁中糖基为甘露糖和葡萄糖[22]、石榴汁中糖基主要以果糖和葡萄糖为主[23]、刺梨汁中糖基为葡萄糖、甘露糖及鼠李糖[24]。因此,目前已鉴定出糖苷的糖基部分一般均以甘露糖、鼠李糖和葡萄糖等单糖多为常见。

  2糖苷键合态香气物质的提取方法

  糖苷类香气前体物质在水果芳香化合物中占据了很大比例,要通过这些键合态香气物质来改善水果及其加工产品香气质量,就需要准确分析糖苷类前体化合物的组成及含量,一般分析分为三个步骤:样品制备、样品纯化及前体化学结构的鉴定。水果及其加工产品中的糖苷键合态香气物质通常选用不同固相吸附材料来提取,然后依次用水、弱极性的有机溶剂来除去多糖、酸及游离态香气化合物,最后将经过分离纯化后的键合态香气化合物以甲醇等相应的有机溶剂将其洗脱出来。

  C18反相吸附剂、反相C-18硅胶、AmberliteXAD-2树脂、LiChrolutEN树脂为提取水果中糖苷键合态前体物质的几种常用吸附剂。目前,AmberliteXAD-2树脂因其对糖苷键合态香气物质具有极强的吸附能力而成为了提取水果中糖苷键合态香气物质最为常用的方法[25]。LiChrolutEN树脂的萃取容量在C18反相吸附剂及AmberliteXAD-2树脂之上,但其常被用于分离鉴定葡萄中以糖苷键合态形式存在的萜烯类物质[26]。

  此外,微波提取法也可用来提取水果中的糖苷键合态香气物质,并具有预处理步骤简捷,提取速度快等优点。但微波提取法因其提取物需要进一步分离纯化且提取物中容易残留非键合态香气成分而应用较少,故仅仅作为一种参考的方法。因糖苷键合态香气物质以糖苷形式存在而不易被检测器所直接检测,故应在糖苷键合态香气前体物质得到富集后对其进行水解处理,从而迫使其释放出可被检测器检测到的游离态香气物质后再进行分析。目前,水果香气物质提取技术主要有溶剂辅助风味蒸发法(Solvent-AssistedFlavorEvaporation,SAFE),顶空固相微萃取法(Headspace-SolidPhaseMicroExtraction,HS-SPME),搅拌棒吸附萃取法(StirBarSorptiveExtraction,SBSE)。

  其中,针对于水果基质容易受到温度影响导致果实风味劣变的问题,研究人员一般采用溶剂辅助风味蒸发法,原因在于其限制了热效应,并且具有着萃取率较高、灵敏性较好的优点,但溶剂辅助风味蒸发法操作繁琐复杂,耗时较长限制了其的进一步发展。顶空固相微萃取法相比于溶剂辅助风味蒸发法而言考虑了基质中挥发性化合物的动态释放,并且具有操作简捷,低成本、无溶剂的特点而更加适合于水果中香气化合物的富集,但其提取的准确度容易受到顶空空间,恒定温度,提取时间,纤维涂层材料及萃取纤维头伸展深度的影响[27]。

  顶空固相微萃取法报道不久,搅拌棒吸附萃取法提出,其与顶空固相微萃取法优势相近,但其萃取能力主要因聚二甲基硅氧烷吸附材料(PDMS)的增加而提升了将近100倍之多[28]。此后研究人员针对不同提取方法提取水果中挥发性化合物的效果作了对比,结果表明溶剂辅助风味蒸发法鉴定的挥发性化合物种类最多,其次为搅拌棒吸附萃取法,顶空固相微萃取法最少。

  但此并不代表溶剂辅助风味蒸发法的萃取效果优于其他二者,只有不同提取技术相互补充才能对样品中挥发性化合物进行较为完整的分析。Liu等[29]对顶空固相微萃取法和溶剂辅助风味蒸发法提取西瓜汁中风味物质的效果进行了比较,得出溶剂辅助风味蒸发法对硫化物的提取效率较高,而顶空固相微萃取法提取饱和醛、烯醛、醇和酮类化合物的效率则较高,并表明两种技术相结合的情况下可以更好的实现对西瓜汁中香气组分的提取。

  3糖苷键合态香气物质的释放方式

  水果在生长成熟过程中由于果实体内β-葡萄糖苷酶酶活性的逐渐升高,糖基则会与配基部分相互分离而释放出可被人们所感知到的游离态香气物质。如在不同成熟阶段橙、葡萄、插田泡等水果中游离态香气物质种类随着果实成熟度的增加而上升,从而赋予了果实更加浓郁的果香、花香及草本香味[30-32]。此外,水果不同的加工方式也会破坏糖苷键进而影响键合态香气物质的含量。

  王可兴等[33]研究了巴氏热杀菌对橙汁中键合态香气物质含量的影响,研究发现热处理很大程度地影响了橙汁中键合态香气物质的含量。Ananthakumar等[34]研究发现肉豆蔻中键合态香气物质总量在辐照剂量达到5kGy时下降了50%,但辐照相对于酶解法、酸解法而言操作较为繁琐,条件难以控制。周志等[35]研究发现相比于单独的酸水解而言,微波辅助酸水解可以更好地释放出野生刺梨汁中的键合态香气物质。目前,酸水解、酶水解是释放键合态香气物质的两种最为常用的方法,而Sun等[36]在近期针对酸水解及酶水解的一些缺点而研究了一种释放键合态香气物质的新方法,并且称此方法为超声水解法(Ultrasonichydrolysis)。

  4糖苷键合态香气物质的分析方法

  键合态香气组分的分析方法主要分为两个步骤,首先采用上述水解方法对其进行水解,然后再通过气象色谱(GasChromatography,GC)与不同检测器相结合的方法对水解后的键合态香气组分进行定性、定量分析。如常见检测器有火焰光度检测器(FlamePhotometricDetector,FPD)、电子捕获检测器(ElectricalCondactivityDetector,ECD)、氢火焰离子化检测器(FlameIonizationDetector,FID)及质谱检测器(MassSpectrometry,MS)等。其中,FPD、ECD及FID检测器主要用于含硫、磷等有机化合物的检测。而MS检测器作为通用型检测器,其具有用量少、灵敏度高、可信度高等优点,是当前水果中最为常用的香气物质检测手段[54]。

  目前,水果中大多水解游离出的香气组分经过气相色谱-质谱联用(GasChromatography-MassSpectrometry,GC-MS)技术检测时均已有相应标准品,但对于缺少标准品的少数香气组分可以C5~C25正构烷烃的保留时间为标准计算其保留指数(Retentionindex,RI)并与相应分析系统的图谱库进行匹配对比,从而可在完成较为准确、快速定性的同时大大提升其鉴定结果的可信度[55]。近期,Vendel等[56]针对GC-MS测定配基用时长且易受到顶空中水分的影响等不足而采用了离子流管质谱法(SelectedIonFlowTube-MassSpectrometry,SIFT-MS)作为快速、无损、定量测定挥发性有机化合物的一种新技术,研究发现将扫描模式下的SIFT-MS与多元统计相结合可以快速鉴别草莓品种间及品种内的香气差异,并且总分析时间相比于GC-MS而言减少了11倍。

  此外,水果及其加工产品整体香气程度的确定并非是将各香气组分简单地累计求和,这是因为各香气组分之间存在着相互作用地效应,其会表现出协同或拮抗现象进而影响某些整体香气效果。故准确对糖苷键合态香气物质水解释放的香气组分与果实及产品中原有游离态香气组分进行定性及快速的确定出其本身所携带的气味对于糖苷键合态香气组分在提升、恢复、还原水果及其加工产品整体香气而言尤为重要。气相色谱-嗅觉辨别法(GasChromatography-Olfactometry,GC-O)可对水果中游离出的香气组分在辅助GC-MS定性定量的基础上进行气味判别,这将为键合态香气物质水解释放的香气组分与果实及产品中原有游离态香气组分相互作用的研究提供可靠的理论参考依据。

  但对于糖基部分的测定则不能采用以上几种方法,因为剧烈的水解作用力在断开糖苷键之间的同时打开了二糖、多糖之间的键,导致无法准确鉴定出二糖的结构。因此,一般对糖苷键合态香气物质的糖基部分采用三氟乙酰衍生法测定,其不会断开糖苷键,鉴定出的二糖苷准确性也较高[23]。比如相关研究采用了三氟乙酰衍生法,先后对树莓汁、石榴汁中糖苷键合态香气物质进行鉴定,发现甘露糖基-β-D-葡萄糖苷、果糖基-β-D-葡萄糖苷可能分别为树莓汁、石榴汁中的二糖苷[22-23]。

  果树种植论文:阳泉市郊区山地果园苹果树施肥技术

  5展望

  香气是衡量水果及其加工产品品质的关键指标,如何准确、快速地释放出赋有愉悦性气味的糖苷键合态香气物质以提升、平衡、恢复水果本身及其加工产品的香气是整个果汁产业所面临的挑战。目前,键合态香气物质的水解方法仍然以酸解法和酶解法最为常用,但超声波水解法将是提升果汁香气质量的一种赋有潜力的新方法,其在缩短反应时间的的同时,水解释放的配基可能更接近橙汁本身关键香气组分。因此,就水果及其加工产品中键合态香气物质而言,寻求一种精准、快速且释放的配基能够最大程度的贴近果实及产品本身关键香气组分的水解方法将为今后的研究重点,同时也是果汁产业的一个新里程碑。

  参考文献

  [1]AGRAWALR,VERMAAK,SATLEWALA.Applicationofnanoparticle-immobilizedthermostableβ-glucosidaseforimprovingthesugarcanejuiceproperties[J].InnovativeFoodScience&EmergingTechnologies,2016,33(2):472-482.

  [2]FRANCISMJO,ALLCOCKC.Geraniolβ-d-glucoside;occurrenceandsynthesisinroseflowers[J].Phytochemistry,1969,8(8):1339-1347.

  [3]CORDONNIERR,BAYONOVECL.Miseenevidencedanslaraisin,varieteMuscatd’Alexandrie,demonoterpenesliesrevelablesparuneouplusieurenzymesdufruit[J].Comptesrendusdel'AcademiedesScience,1974,278:3387-3390.

  [4]GUNATAYZ,BAYONOVECL,BAUMESRL,etal.ThearomaofgrapesI.Extractionanddeterminationoffreeandglycosidicallyboundfractionsofsomegrapearomacomponents[J].JournalofChromatographyA,1985,331:83-90.

  [5]CABRITAMJ,FREITASAMC,LAUREANOO,STEFANORD.GlycosidicaromacompoundsofsomePortuguesegrapecultivars[J].Journalofthescienceoffoodandagriculture,2006,86(6):922-931.

  [6]UGLIANOM,MOIOL.FreeandhydrolyticallyreleasedvolatilecompoundsofVitisviniferaL.cv.Fianograpesasodour-activeconstituentsofFianowine[J].Analyticachimicaacta,2008,621(1):79-85

  作者:马亚琴*,张晨,邓涂静,周佳