时间:2012年09月11日 分类:推荐论文 次数:
摘要:节能设计中建筑电气节能占着十分重要的地位。我们在设计中,应充分利用资源,合理设计。推广使用节能产品。本文主要对建筑电气设计中的节能措施进行了探讨。
关键词:建筑电气 节能设计
Abstract: the energy saving design of electric energy conservation building of a very important position. We in the design, should make full use of resources, the reasonable design. Promotion use energy-saving products. This paper focuses on the energy saving measures in the design of the building electric are discussed in this paper.
Keywords: electrical building energy efficiency design
中图分类号:TE08 文献标识码:A 文章编号:
引言
建筑电气的节能潜力很大,应在设计中精心考虑。但是在选用节能的新设备上,应具体了解其原理、性能、效果,从技术、经济上进行比较后,再选定节能设备,以达到真正节能的目的。
1 建筑电气设计节能的原则
1.1满足建筑物的功能
即满足照明的照度、色温、显色指数;满足舒适性空调的温度及新风量,也就是舒适卫生;满足上下、左右的运输通道畅通无阻;满足特殊工艺要求,如娱乐场所的一些电气设施的用电,展厅的工艺照明及电力用电等。
1.2考虑实际经济效益
节能应按国情考虑实际经济效益,不能因为节能而过高地消耗投资,增加运行费用。而是应该让增加的部分投资,能在几年或较短的时间内用节能减少下来的运行费用进行回收。
1.3节省无谓消耗的能量
节能的着眼点,应是节省无谓消耗的能量。首先找出哪些地方的能量消耗是与发挥建筑物功能无关的,再考虑采取什么措施节能。如变压器的功率损耗,传输电能线路上的有功损耗都是无用的能量损耗,又如量大面广的照明容量,宜采用先进技术使其能耗降低。
2 建筑电气的节能设计
2.1变压器得节能设计
在变压器设计中应尽量采用低能耗及铜线材的新型高效节能变压器,选择其台数和容量时,尽可能使变压器负荷率设计在70%~85%。同时在满足容量及负荷率的情况下,应尽量减少变压器的台数,选择大容量变压器,以减少变压器损耗。另外,在空调负荷较大时可采用单独一台变压器作专用空调变压器,在空调不使用的季节时可停运,以达到节能降耗的目的。
2.2配电系统的节能设计
在工程设计中,变电所的中心位置应尽量接近负荷中心,以缩短配电半径,减少线路损耗,同时还要兼顾电源的进出线方向。实际上对多数用户来讲,至少从有色金属消耗量及线路功率损失这两个原则出发选择变电所的位置,得出的结果才能使用户在一次性投资、节能降损及设施维护管理等方面产生直接的经济效益。
根据负荷容量、供电距离及分布、用电设备的特点等因素合理设计供配电系统,使系统尽量简单可靠,操作方便。根据规程规定,要求配电变压器出口处的电流不平衡度不大于10%,干线及分支线首端的不平衡度不大于20%,中性线的电流不超过额定电流的25%,这是因为在配电系统中,有的相电流较小,有的相电流接近甚至超过额定电流,这种情况下,不仅影响变压器的安全经济运行,影响供电质量,而且会成倍增加线损。在设计中应尽量减小三相不平衡度。
2.3电气配电线路的节能设计
配电线路电能的损耗取决于线路的阻抗和电流,与阻抗成正比、与电流的平方成正比;而线路的阻抗与导线的导电率和长度成正比,与导线的截面积成反比。因此配电线路选用高导电率的导体,尽量采用铜芯线,不采用铝芯线;在满足规范要求的情况下,尽量提高电压等级和功率因数,以降低电流。如今照明大量采用荧光灯,配置电感镇流器,其功率因数很低,仅约0.5,而就地加电容补偿器或采用电子镇流器,其功率因数可达约0.9,这样一来,采用电子镇流器的线路电流只有采用电感镇流器的5/9,而线路损耗在只考虑电阻时只有1/3.24。
对于没有特殊要求的场所,尽量采用三相供电,而避免采用单相供电,也可降低电流。三相与单相供电线路损耗比较,假设线路长度一样,负荷为电阻性负载且三相完全平衡,单相线路导线截面积S1=16mm2,三相线路导线截面积S2=4mm2,那么单相线路电阻R1为三相线路电阻R2的1/4,在负载功率相同时,单相线路电流I1为三相线路电流I2的3倍,在只考虑线路电阻损耗时,单相线路损耗P1为三相线路损耗P2的1.5倍。由于三相负荷完全平衡,N线电流为0,因此N线没有损耗。
3 建筑电气节能设计的措施
照明系统、动力系统、供配电系统是建筑物用电最主要的三大块,我们根据这三大系统的各自特点来一一阐述建筑电气节能在设计时的应对对策。
3.1照明系统的节能措施。
照明系统,可谓是与消费者最为息息相关的电气系统之一,消费者眼能看到、手能触到、通过电表的显示也能直接了解到电能的消耗量。同时,照明系统也是电气设计中涉及面较广的一个部分,它涵盖了房屋内部、通廊过道、小区内外部等。对照明系统的节能设计,旨在保证人们可视度和视觉舒适度的要求,并且在保证照明器材质量的前提之下,尽可能降低照明系统内对光能的无谓损耗,最大限度地利用好光能。
照明系统的节能可以有以下几种途径:
3.1.1要选择相对高效的光源来进行设计
按照照明设计的规范文件,对各个不同场所的照度标准、照明功率密度、视觉要求等进行严格控制,从另一个角度来说,控制好照明规范的各个条款,就是要从单位面积上限制好安装灯具的功率消耗。最好在保证照明质量的前提下选择高效发光或紧凑型的荧光灯进行照明,这类灯具相比于普通白炽灯具有更好的节能效果。
3.1.2照明方式的选择很重要,要做到合理与便捷。电气设计人员与建筑物设计人员是紧密相关的,电气设计人员在设计时一定要参考建筑物的整体规划和窗体朝向等进行节能的安排,必要时候,可以对建筑物设计人员提出相关意见与建议。自然光是最为有利于身心和日常生活的可再生能源,有效利用自然光,可以帮助施工单位大大减少电气能源的消耗。设计人员要注重自然光与室内照明的合理结合,既能保证人们的日常用光,又能有效节约照明设备的使用与供应。同时,根据自然光所能达到的光照效果,设计合理适用的灯具照度,在自然光效较好的建筑群中,可适当减小照明设备的照度,从而降低能源消耗。另外,所自然光照位置、强度等,可以适当地分区安排照明设备,不均匀布光或者使用混光照明。
3.1.3注意照明控制方式的设计。设计人员可以根据布光的不均匀程度,适当增加照明控制开关,减少消费者全光照明的机率,通过照明设备开关引导使用者哪里用光就点这哪里,有效减少发光设备的同时使用数量。另外,根据建筑物的不同设计不同类型的开关,以便整体控制。比如在学校、宾馆、体育馆等地,可以对走廊、公共活动区域的照明进行统一布控,使用同一开关进行控制,设专人根据天气情况或时间变化进行光照控制,减少光能的浪费。
3.1.4电气附件的选用也要节能。日常施工和设计过程中,相关人员更关注于照明灯具的节能减耗,却忽略了电气附件也是耗能过程中的一个重要环节。以小见大,电气附件的日常耗能积累起来,也是一笔不小的数目。一般而言,荧光灯的电感镇流器功率为灯管额定功率的20%,而相比之下,高强度气体放电灯(HD)的电子镇流器则仅为灯管额定功率的15%左右。更实际的是,气体放电灯的电子镇流器要比荧光灯的电感镇流器更为轻巧,并且噪音小、无频闪、升温速度也慢。比较下来,电子镇流器的节电能力要远远大于电感镇流器,因此在选用气体灯具的地方,选装电子镇流器更为实用节省。
3.2动力系统的节能措施。
电动机是动力系统的动力源泉,无论是家电还是大型电力设备的使用,都离不开电动机的使用。电动机的电力消耗是相当大的,如果在电动机的运转与用电上节约能源,则可以为建筑电气节能提供更具成果性的帮助。要想减少电动机的耗能,最好从提高其工作效率上入手。可以考虑采用以下几种方法:
3.2.1根据电动机的不同负荷特征来选择使用型号。要根据施工环境对电动机负荷需求进行评估,避免选用负荷过大或过小的电动机型号。
3.2.2积极选用高效率的电动机。尽可能地减少电动机的空载和负载消耗,提高工作效率。
3.2.3改进电动机的控制方式,提高其在运行过程中的效率。比如交流电动机可以选用变频调速的方式,或者是在压缩机、电梯等机械设备上使用变频器等。另外要注重产品质量的控制,保证电能消耗的计算与实际应用符合。
3.3供配电系统的节能措施。
这主要提在运输、转换等过程中进行节能减耗的方法。主要有以下途径:
3.3.1慎重选用供电电压。在相同的供电情况下,电压越高,电能的损失越少。3.3.2选用简单的供配电系统,选购时注重产品质量。
3.3.3变压器容量选择合理,变压器使用数量据实际建筑物所需采购,不可浪费,也不可缺少。
3.3.4电缆电线的截面是否符合电流密度,也直接影响着节能情况。
3.3.5整体功率因素的把握,适当情况下可提高功率因素。
4 结语
建筑电气的建设逐渐向自动化、节能化、信息化和智能化方向发展,这些方面必然对电气设计有许多新的要求,使建筑电气的设计业务范围不断扩大,技术要求越来越高。一个设计的合理性直接影响电气设备的成本,只有经过仔细的设计,根据实际情况,既为将来发展留出余量又节省投资,这样才是一个合理的设计。
参考文献:
[1]《建筑照明设计标准》(GB 50034-2004)中国建筑工业出版社2004
[2]《建筑节能设计统一技术措施》(上海现代建筑设计(集团)有限公司编)2009
[3]许琳.建筑电气节能途径探讨[J].节能,2007,(4):73-75.
[4]罗建华.建筑电气设计中的节能措施[J].建筑与设计,2007,(1):66—67.